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SUMMARY 

A variational formulation for the solution of two dimensional, incompressible viscous flows has been 
developed by one of the authors.' The  main objective of the present paper is to  demonstrate the 
applicability of this approach for the solution of practical problems and in particular to  investigate the 
introduction of boundary conditions to  the Navier-Stokes equations through a variational formulation. 
The application of boundary conditions for typical internal and external flow problems is presented. 
Sample cases include flow around a cylinder and flow through a stepped channel. 

Quadrilateral, bilinear isoparametric elements are utilized in the formulation. A single-step, implicit, 
and fully coupled numerical integration scheme based on the variational principle is employed. 
Presented results include sample cases with different Reynolds numbers for laminar and turbulent 
flows. Turbulence is modelled using a simple mixing length model. Numerical results show good 
agreement with existing solutions. 
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INTRODUCTION 

The numerical solution of the Navier-Stokes equations for incompressible, viscous flows 
requires the coupled solutions of two types of equations. The first equation is the condition 
of incompressibility: 

This condition is a kinematic constraint on the velocity field (u, v). A second set of equations 
specifies the conservation of momentum: 

u, + v, = 0 (1) 

(2) 

(3)  

1 
P 

1 
P 

u, + uy,  +vu, =- px + vv2u 

v, + uv, + vv, = - pv + vv2v 

These equations are non-linear owing to the presence of the convection terms. The task of 
obtaining a solution requires the treatment of the coupling between the two types of 
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equations. Boundary conditions for u, v and consequently p have to be included consistently 
in the formulation. In practice, however, one observes that coupling between pressures and 
velocities produces difficulties both for the coupled numerical integration of the system and 
the introduction of the boundary conditions. 

A second approach to the solution of the Navier-Stokes equations is to introduce vorticity 
as a new variable and replace equations (2) and (3)  with the vorticity transport equation: 

In this case, pressure is eliminated as a variable. A new kinematic relationship, as defined in 
equation (4), is introduced and only one vorticity transport equation has to be integrated. 
Now, the problem reduces to one of obtaining a coupled solution of the boundary conditions. 
In practice, again difficulties are encountered in obtaining full coupling between these 
equations, especially at the boundaries. 

In this paper, the solution of the Navier-Stokes equations is discussed based on a 
variational form. Using a Clebsch type of transformation: 

a variational formulation for the solution of equations (l), (4) and ( 5 )  was presented in 
Reference 1 which also introduces the variables 4, P and q. The details of the formulation 
are not repeated here. However, the importance of the proper treatment of the boundary 
conditions is presented in detail. 

METHOD OF SOLUTION 

A variational functional can be defined for the solution of the Navier-Stokes equations (l), 
(4) and ( 5 )  in terms of the basic variables (4, p, J, q) as defined in equations (6) and (7). The 
Lagrangian, L, for this case can be written as follows: 

L =4(4x+Py-vJx)2+$(4y -Px-qJy)2 -qJr -pJ+vqv2s  (8) 
From the above Lagrangian, one can proceed to show (1) that the minimization of the 
variational functional satisfies equations (l), (4) and ( 5 )  with the following natural boundary 
conditions on the boundary: 

where n and t are defined in the normal and tangential directions to the boundary, C, 
respectively, and p and q are specified values of normal and tangential velocity on the 
boundary, C. 

Bilinear, four-noded isoparametric elements were employed in the formulation. At each 
node of the element four varibles (& Pi, Ji, qi> were specified as unknowns. The resulting set 
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of implicit non-linear equations are written in matrix form as: 
Kn+l+n+l , fn+l  

where K is an unsymmetric matrix and is a non-linear function of the nodal variables. These 
algebraic equations are solved in a fully coupled fashion. The vector f includes the effects of 
the specified natural boundary conditions, p and q. To improve the efficiency of the solution 
scheme a constant coefficient matrix was employed in the following form:2 

with 

where KO is the coefficient matrix formulated at the first time step and w is a relaxation 
parameter. 

The main advantages of the above formulation can be summarized in two parts: 
(a) The resulting formulation produces a fully coupled system for the solution of the 

(b) Most of the flow boundary conditions become natural boundary conditions. 
equations. 

In order to illustrate these advantages two sample problems were investigated using the finite 
element grids shown in Figures l(a) and l(b). In the case of two-dimensional, symmetric flow 
around a cylinder shown in Figure la ,  the boundary conditions can be specified as follows: 

On the free stream boundaries (D-E-F-A), u and 2) are specified as natural boundary 
conditions. 

On the line of symmetry (A-B, C-D), 2) = 0 is specified as a natural boundary condition. 6 
is specified as a forced boundary condition. 0 is specified as a forced boundary condition 
and then u on this line is calculated automatically. 

Figure l(a) 

Figure l(h). Finite element model for step duct 
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On the cylinder surface (B-C), u = v = 0 are specified as natural boundary conditions. 
Also, r) = 0 is specified as a forced boundary condition. From equation (1  l), this corre- 
sponds to defining the rigid wall as a vorticity generating surface. Vorticity is automatically 
calculated from the kinematic relationship given in equation (4). 

For the second sample problem of a channel with a backward facing step, inlet and outlet 
boundary conditions are specified as natural boundary conditions for velocities u and o. 
Vorticity specification is not required on these boundaries. Along the solid walls of the 
channel (A-B-C-D, and E-F), natural boundary conditions for (u = u = 0) and the vorticity 
generating boundary condition (r) = 0) are specified. 

The above examples illustrate the practicality of the present approach for coupling 
vorticity and velocities. As stated in the introduction previously, this has been a major 
diffculty in the solution of the Navier-Stokes equations. While only two of the three basic 
variables (u, v, 5 )  are needed to specify the boundary conditions uniquely, the coupled form 
of the governing equations, as derived from the variational form, provides the necessary 
coupling to determine the third variable. 

MODELLING OF THE TURBULENT FLOW 

A simple model was defined to account for the turbulence in the flow based on a mixing 
length the01-y.~ The eddy viscosity near the wall region is defined as: 

a u  av 
p.,=p1; -+- 

lay 8x1 

where 

until the following value of I, is reached and subsequently used: 

I ,  = 0.076 

where 6 is an arbitrary cutoff criterion based on the vorticity. For the wake region, the eddy 
viscosity is calculated from the following equation: 

where u, and uc are the velocities at the edge of the wake and its centreline, respectively. 
L 

DISCUSSION OF RESULTS 

Several test cases for the solution of the Navier-Stokes equations were analysed based on the 
formulation presented above. Results were obtained from the flow around a cylinder and for 
the flow through a stepped channel using the finite element grids shown in Figures l(a) and 
l(b). these cases are typical examples of external and internal flow problems with separation. 
The present results were compared with existing numerical and experimental results. 
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Flow around a cylinder 

Flow around a cylinder for Re=200 was calculated using the developed numerical 
procedure. In this case, the Reynolds number is defined as Re = U,D/v, where U, is the free 
stream velocity, D is the diameter of the cylinder and v is the kinematic viscosity. 
AtU,/D = 0.0125 and was employed for numerical integration of the equations. The 
obtained numerical results are shown in Figures 2 (a) and (b). 

Flow in a stepped-channel 

Flow in a stepped-channel was analysed using the finite element grid shown in Figure l(b). 
Fourteen elements were placed in the flow direction. Eight elements were placed across the 
duct upstream of the step and fourteen elements were placed downstream of the step as 
shown in the figure. Both laminar and turbulent flow cases were investigated for this 
problem. The flow Reynolds number is given as Re = U,h/v, where U,, is the average 
velocity at the inlet and h is the step height. Laminar flow cases include Re = 25, 7 3  and 229. 
Turbulent flow calculations were obtained for Re = 3025. For the last three test cases, the 
grid was extended as shown in Table I, while the number of elements were kept the same. 
The velocity profiles for all of the above test cases are presented in Figures 3 (a)-(d) and 
compared with results by Also, in Figure 4, variation of the length of the separated 
region is shown as a function of the Reynolds number and compared with previously 
published results. The presented results show good overall agreement. The time steps and 
the number of steps to obtain convergence are also summarized in Table I for flows with 
different Reynolds numbers. 
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STREAMLINE CONTOURS 
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Figure 2(b). Streamline pattern for circular cylinder (Re = 200) 

Table I. Number of iterations for converged solutions for 
different Reynolds numbers 

Number o f  Inlet Outlet 
Reynolds At Iterations Length Length 

25 0.1 125 -25.0 1-25.0 
73 0.1 430 -70.0 +70.0 

229 0.01 960 -70.0 +70.0 
3025 0.01 30" -70.0 +70.0 

* Solution of  Re = 299 is used as an initial distribution of Re = 
302.5. 

Figure 3(a). Axial velocity profile for step duct (laminar flow) 
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Figure 3(b). Axial velocity profile for step duct (laminar flow) 

Figure 3(c). Axial velocity profile for  step duct (laminar flow) 

Figure 3(d). Axial velocity profile for step duct (turbulane flow) 
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Finite Element Method: 
Present Results 
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A Experimental inlet profiles [41 
+Fully developed inlet profiles I51 
+Experimental inlet profiles [51 

0 Dye tracer [Sl 
0 Laser anemometer 161 

Measurements: 

Reynolds number (Re) 

Figure 4. Variation of separation length with flow Reynolds number 
(laminar) 
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Figure 5. Comparison of convergence of constant and variable coefficient 
matrix (Re = 73) 
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Convergence characteristics with the constant coeficient matrix 

One numerical experiment was performed to determine the convergence characteristics of 
a solution scheme in which the coefficient matrix was updated periodically. This drastically 
improves the most costly part of a step, namely the decomposition of the global coefficient 
matrix. 

Convergence results are shown in Figure 5. The inlet wall vorticity for Re =73 in the 
stepped channel example is plotted as a function of the number of time steps. Results for 
which the coefficient matrix was decomposed at every step are shown as a solid line. 

It can be seen from Figure 5 that the results obtained by decomposing the coefficient 
matrix every step and every ten steps show negligible difference. 
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